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Abstract Automatic prediction tools play a key role in
enabling the application of non-functional requirements
analysis, to simplify the selection and the assembly of compo-
nents for component-based software systems, and in reducing
the need for strong mathematical skills for software design-
ers. By exploiting the paradigm of Model-Driven Engineer-
ing (MDE), it is possible to automatically transform design
models into analytical models, thus enabling formal prop-
erty verification. MDE is the core paradigm of the Klaper-
Suite framework presented in this paper, which exploits the
KLAPER pivot language to fill the gap between design and
analysis of component-based systems for reliability proper-
ties. KlaperSuite is a family of tools empowering design-
ers with the ability to capture and analyze quality of service
views of their systems, by building a one-click bridge towards
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a number of established verification instruments. In this arti-
cle, we concentrate on the reliability-prediction capabilities
of KlaperSuite and we evaluate them with respect to several
case studies from literature and industry.
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1 Introduction

Non-functional properties of software are critical in a large
number of everyday applications. The pervasiveness of soft-
ware intensive components spreads from avionic control sys-
tems to financial transactions management, up to intersecting
the web navigation of everyone. End users do not only expect
software to provide its intended functionality, but also to be
dependable, performant, and cost-effective. Meeting these
expectations is becoming a core aspect of software devel-
opment processes. For this reason, the central role of non-
functional properties has to be accounted for since the early
stages of design. The high-level design choices, such as the
architectural ones, set the basis to achieve both functional and
non-functional goals, and need to be supported by method-
ologies and tools able to capture these two dimensions of
the product at the same time. In the practice of past years,
first the entire system is built, then its Quality of Service
(QoS) is measured and, when violations to its requirements
are discovered, developers have to try to identify the most
appropriate improvements.

This practice may lead to several drawbacks. Late discov-
ery of non-functional requirements violations can be harmful
for the success of the development process itself. Indeed, the
impact of changes on development costs and on failure risks
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may be non-negligible, if changes are applied when a com-
plete implementation of a system already exists [64].

In recent years, several techniques for early assessment of
quality attributes have been proposed in the literature, typi-
cally based on very specific quality-related formalisms such
as Queuing Networks (QNs) [40], Petri Nets (PNs) [53], or
Markov models (MMs). However, given their very specific
purpose, such formalisms are not suitable for representing
many design concerns, and often require a deep knowledge
of the underlying theoretical foundations to understand the
provided results, which not every software engineer has.
Software systems are in fact rarely designed starting from
mathematical models: designers usually think at different
abstraction levels and use domain-specific concepts that bet-
ter reflect the modeling intent. The wide-spread usage of lan-
guages such as the Unified Modeling Language (UML) [49],
SysML [48], or domain-specific languages [6,15] to design
component-based systems [65] provide some evidences.

To overcome this modeling gap between quality-specific
formalisms and high-level design languages, model-based
quality prediction approaches [4–6,8,37,64,69,70] have
been proposed in the literature. The idea behind these
approaches is to leverage model-driven engineering (MDE)
techniques—such as model transformations [3,7,16,21]—
to relieve the engineer from the burden of manually creating
and maintaining quality-oriented formal models. Indeed, the
quality-oriented models can usually by automatically derived
from design-oriented abstractions. An example is the per-
formance by unified analysis (PUMA) approach described
by Woodside et al. [69], which proposes the adoption of
UML augmented with performance information through pro-
files to model architectures. These design-oriented abstrac-
tions can be then automatically converted into a layered
queuing network (LQN) model and the quality of the sys-
tem consequently predicted. The Palladio component model
(PCM) described in [6] is another notable example of
the same paradigm. The PCM approach proposes its own
modeling language to represent component-based soft-
ware systems in place of UML and provides a compre-
hensive model-driven toolchain to analyze several quality
attributes—not only performance—of designed systems.

In this article, we present KlaperSuite, our model-driven
proposal to support early-stage analysis of non-functional
attributes for component-based systems [65] which we
already introduced in [12].

The core idea behind KlaperSuite is to exploit a pivot
model [29] to bridge the gap between design and analy-
sis models and provide a comprehensive toolchain for QoS
assessment. The pivot model is KLAPER, a close-to-design
formalism that captures also relevant information for QoS
analyses. KLAPER can represent design concepts, such as
components, behaviors, or single operations, as well as a
broad and extensible set of QoS annotations. A number of

automatic transformations from KLAPER to analysis mod-
els are provided by the KlaperSuite, that is also in charge of
running the specific analyzers and bringing their results back
to the designers in a completely transparent way. KlaperSuite
is enabled by an extendible plugin-based architecture, allow-
ing QoS specialists to define new model transformations from
KLAPER to other useful existing analysis tools.

From a designer perspective, it is possible to define a
model transformation for her preferred modeling language
(e.g., UML) to KLAPER, and then let the KlaperSuite run any
of the available analyses with no need to deal with the seman-
tics of the many underlying analysis models. This approach
enhances the reuse of KLAPER-based analysis tools and
make available all of them in a unified interface. Klaper-
Suite also provides support for direct definition of KLAPER
models as first class artifacts. Indeed, KLAPER embeds the
most common design concepts and can be possibly used as
first modeling language.

Finally, KlaperSuite provides access to all the automati-
cally generated analytical models for further investigation by
expert users.

The main contribution of this paper is twofold. First,
we describe our comprehensive tool-chain based on the
KLAPER language—which previously was only a stand-
alone proposal and lacked the level of integration necessary
for its usage in real scenarios—by concentrating especially
on its reliability-prediction features. Second, we validate our
approach, and specifically its reliability prediction features,
by applying KlaperSuite first to the analysis of cases taken
from the literature and then on an industrial problem. The
results show that KlaperSuite provide results as accurate as
the compared approaches taken from the literature and that it
is efficient enough to scale on large industrial-strength prob-
lems.

The rest of the article is organized as follows. Section 2
introduces the KLAPER language, its usage scenarios, and
outlines the benefits of using a pivot language. Section 3
describes the KlaperSuite framework, pinpoints its relation-
ship with KLAPER, and outlines the supported QoS analysis
tools. Section 4 instead describes in detail the tools provided
by KlaperSuite to perform reliability analyses. In Sect. 5,
we present our case studies to show the capabilities of our
framework, while Sects. 6 and 7 describe related work and
future research directions, respectively.

2 The KLAPER approach

The KlaperSuite framework is built upon the concepts pro-
vided by the KLAPER intermediate language and upon its
model transformations and analysis capabilities. In this sec-
tion, we briefly describe KLAPER to introduce some useful
concepts that will be used in the rest of this paper. First, we
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pinpoint why intermediate languages are useful to ease QoS
analysis tasks—both from the point of view of system design-
ers and of engineers building frameworks to perform such
analysis—and what distinguishes them from other modeling
notations. Then, we introduce the two main usage scenarios
of KLAPER, i.e., either system designers directly use it to
model systems or it is used as a hidden bridge to fill the gap
between design models and QoS analysis models. Finally,
we provide a brief description of the concepts provided by
KLAPER.

2.1 Overview and motivation

KLAPER is an intermediate modeling language [29] whose
main goals are to separate system design models from
quality-related models and to ease the translation among
them. Design and quality-related models are very differ-
ent kinds of abstractions, both from a syntactic perspec-
tive and from a semantic perspective. The former are more
user oriented and talk in terms of concepts closer to the
engineering domain area. A well-known example is UML
[49] and the concepts it provides to specify the architec-
ture of a system in the form of class, component, and
deployment models. The latter concentrate instead on qual-
ity and are centered around the QoS analysis techniques
to compute predictions. In this sense, a notable exam-
ple is represented by the Queuing Network formalism,
which provides a user-friendly notation to describe how
jobs and computations are performed by a system and
flow through the various resources, but that can be hardly
used to describe different non-quality-related facets of a
system.

When quality is an important aspect for a software
system, both these kinds of abstractions are necessary.
Given this aforementioned mismatch of information, the
design models specifying, e.g., the architecture of the sys-
tem are not well suited for QoS analyses, and comple-
mentary quality models are necessary to use the existing
QoS prediction techniques available in the literature. Soft-
ware system design is, however, an iterative and interac-
tive process in which models undergo several refinement
stages. If both architectural and quality-related models are
used by system designers, keeping them consistent during the
whole process is mandatory and to be effective it demands
automation.

In this sense, mechanisms to link system design mod-
els with quality-related models are necessary. These mech-
anisms should be devised for both directions: from design
model to quality-related models, to support automated inves-
tigation of QoS properties of possible design solutions,
and in the opposite direction to bring analysis results back
to design models (e.g., by automating the insertion in
the design models of suggested modifications). We review

in Sect. 6, the proposed approaches covering these two
issues. The focus of this paper is on mechanisms sup-
porting the design model to quality-related model link-
ing.

Different options are viable to achieve this goal. Either this
linking/translation can be performed in a direct manner—
system designs are translated into quality models in one sin-
gle step—or the translation process can be split in two or
more separate, and smaller, steps. Intermediate languages
play a fundamental role in the latter case and, for what con-
cerns KLAPER, the process of keeping consistent these two
abstractions is split in two stages:

• Extracting from system design models all (and only) the
information relevant for the analysis of QoS metrics and
expressing it with an intermediate language (which in our
case is KLAPER).

• Generating quality-related models from such informa-
tion.

The KlaperSuite framework supports the former stage by
the definition of the KLAPER language itself, whose lin-
guistic constructs help in evidencing the relevant informa-
tion to be extracted. Then, KlaperSuite supports the latter
stage by automating the transformation from a KLAPER
model to a suitable analysis model. Using such a multi-
stage approach has the advantage of reducing the semantic
gap between consecutive stages, thus facilitating their def-
inition and automation. Besides, adopting a model trans-
formation approach based on an intermediate language
has the positive side effect of alleviating the potential
“n-by-m’ problem, i.e., the problem of translating n
heterogeneous design notations (that could be used by the
different system architects or component providers) into
m quality-related notations (each one supporting different
quality metrics and prediction techniques). Indeed, by split-
ting the translation in two stages, the “n-by-m” problem is
reduced to the definition of n transformations from the var-
ious design notations to the single intermediate language,
and m transformations from the intermediate language to
the different quality-related formalisms. Supporting new
analysis techniques (or integrating into the framework an
existing one) would then require only adding one new
transformation from the intermediate representation to the
specific quality-related formalism required by the new pre-
diction technique; where the direct approach would have
instead required writing n transformations. The same would
hold if a new design language must be integrated. Instead of
writing m new transformations to support all the available
analysis formalisms, the two-staged approach requires only
the development of one transformation to the intermediate
representation.
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a

b

Fig. 1 KLAPER usage scenarios

2.2 Usage scenarios

The main purpose of intermediate languages such as
KLAPER is to ease the development and the usage of quality-
prediction frameworks by bridging the gap between design
models and quality-related formalisms. Nonetheless, given
their conciseness and expressiveness, intermediate languages
can also be directly used by architects to design systems.
Figure 1 depicts this fact in the specific case of KLAPER.

A software architect can possibly work at two different
abstraction levels. In the first scenario (branch a in the fig-
ure), architects design a system using a design-oriented mod-
eling notation such as UML [49] or SysML [48], interme-
diate KLAPER models are hidden from their perspective,
automatically kept consistent with the upper level models,
and used to generate quality models and predict the system
QoS (see also [29]). This is the standard scenario and the
preferred way to leverage the possibilities offered by inter-
mediate languages. The other viable option (branch b in the
figure) consists instead in working directly at the KLAPER
level to model both the architecture of the system and its
quality attributes [28]; the transformation facilities will then
be used only to generate the quality models to predict the
system QoS. This option is not advisable when new software
systems are being developed, but it is useful in situations in
which no design models of the system exist—for example
when dealing with legacy applications—but architects want
to assess the impact of some changes on the exhibited quality
without having to reverse engineer a complete design model
of the system being maintained.

2.3 The KLAPER meta-model

KLAPER provides a set of modeling concepts to express in a
compact and elegant manner, both architectural and quality-
related information for component-based software systems,
by abstracting away at the same time all the irrelevant details.
Figure 2 outlines the KLAPER meta-model and the relation-
ship among the provided concepts.1 As we will clarify later
in Sect 3, our language (and the associated framework) is
mainly intended for supporting stochastic quality prediction
techniques and, specifically, performance/reliability stochas-
tic analyses for component-based systems. It is, thus, no sur-
prise that the KLAPER meta-model reflects this fact and that
it is centered around components and stochastic properties.
In the rest of this section, we provide a brief overview of how
system designs can be represented with KLAPER. A detailed
explanation of the language is available in [29].

In terms of KLAPER, a system is an assembly of
Resources modeling either software components or hard-
ware components—such as a processor, a disk, or a
communication link—and offering/requiring one or more
Services. Resources and Services are the basic building
blocks of the language and provide different properties to
specify both functional and non-functional aspects. The
scheduling policy and the multiplicity for the Resource meta-
class are examples of such properties, which determine the
specific algorithm used to complete service requests and the

1 Some details (e.g., the attributes of the meta-classes) have been omit-
ted for clarity and space reasons.
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Fig. 2 The KLAPER meta-model

number of concurrent requests that can be served in parallel,
respectively.

A Service models a piece of functionality and it may be
characterized by specifying its formal parameters which will
be instantiated with actual values during service invocation.
Formal parameters (and the corresponding actual parame-
ters) provide a convenient abstraction of the real service
parameters for analysis purposes, and are especially useful
to support parametric QoS analyses [29]. For example, the
functionality of a component responsible for processing a list
of objects (for example a list of invoices) may be abstractly
represented with a service accepting as formal input para-
meter an integer-valued random variable, whose probability
distribution determines the likelihood of being invoked with
lists of different sizes.

KLAPER also allows for the specification of how com-
ponents work internally (reactive behavior) by attaching a
behavioral specification to each Service and of how the sys-
tem is used (proactive behavior) by attaching a behavioral
specification to a Workload, which models the demand for

the software system requested by external entities such as
users. We recall that KLAPER is mainly concerned with
QoS and, as a matter of fact, the behavior of a service is
described in an abstract manner and from a stochastic per-
spective. In detail, a Behavior is a directed graph of Steps,
each one modeling an atomic piece of computation that may
take time to complete and that may fail before its comple-
tion. A Step is intended to be a computational abstraction, that
could encompass several lines of code of a real component.
Steps can also be further described by specifying the inter-
nalExecTime, the internalFailTime and the internalFailProb
attributes to give a probabilistic characterization of important
quality-related aspects of execution. We point out here that
the performance/reliability attributes associated to each Step
only refer to the internal characteristics of the computation
stage. They do not take into account the possible delays or
failures caused by the invocation of other services required
during the computation. These two aspects will then be com-
posed together in the model analysis phase, to get the overall
system performance and/or reliability.
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Different kinds of Steps are supported by KLAPER. Con-
trol Steps (Branch, Fork, Join) can be used to regulate the
flow of control from Step to Step in a probabilistic manner.
Specifically, the Branch step models the conditional selec-
tion among different alternatives, and Fork and Join steps
model parallel execution of activities. Loop control struc-
tures can be modeled in KLAPER in two different ways:
either as guard-controlled loops, with a Branch step proba-
bilistically modeling the guard that controls the exit from the
loop, or using the Repetition attribute of Activities and Steps.

ServiceCall steps can be used to model invocation of exter-
nal services. A ServiceCall only specifies the existence of a
relationship among required and offered services, the actual
recipient of the call is captured separately through a Bind-
ing. This distinction allows for a clear separation between
the model of the components and the model of their compo-
sition. A set of bindings can be regarded as a self-contained
specification of an assembly and, since the ServiceCall con-
cept can also be used to model the access to platform level
services from components, a set of bindings can model as
well the deployment of the application components on the
underlying platform.

3 The KlaperSuite framework

KlaperSuite is an integrated framework built upon the
KLAPER intermediate language and upon its transformation
and analysis features. The aim of KLAPER is to provide a
foundation of concepts, meta-models and techniques to easily
build tools, possibly based on the existing quality-prediction
methodologies, to support the early assessment of the QoS
for software systems. The goal of the KlaperSuite framework
is instead to integrate those existing tools based on KLAPER
into a user-friendly development environment.

Providing an integrated workbench, where obtaining pre-
dictions for the QoS of the software system being designed
is a one-click experience, is critical for a widespread adop-
tion of a quality prediction methodology. We believe that
the more a development environment seamlessly integrates
QoS analysis techniques, the more practitioners will adopt
those techniques and the more they will build reliable and
performing software. As a consequence of this fact, Klaper-
Suite2 has been built upon the Eclipse IDE [66], a de-facto
standard both in academia and in industrial settings, to pro-
vide a unified interface and a familiar environment.

Figure 3 shows a global view of what KlaperSuite is by
outlining the relationship with KLAPER and the supported
QoS analysis techniques in Fig. 3a, as well as what the user
experience looks like in Fig. 3b. The current implementation

2 The framework can be downloaded from http://home.dei.polimi.it/
filieri/tools2011.

of KlaperSuite aims at providing a comprehensive family of
tools to execute common QoS analysis tasks, ranging from
prediction of reliability to performance. For what concerns
reliability, KlaperSuite currently supports both a PRISM-
based analysis tool and a recursive Markov chain (RMC)-
based tool. This paper specifically focuses on the evalua-
tion of the reliability prediction capabilities of KlaperSuite,
hence we give an extensive overview of how these analyses
work in Sect. 4, while we defer to Appendix A for details
about the model transformations that allow to carry out the
analysis. For what concerns performance, KLAPER already
provides both an LQN-based prediction tool and the Sim-
Java3-based simulator (a description of these tools can be
found in [12,57]). We are currently in the stage of refactor-
ing and fully integrating these analyzers into KlaperSuite;
their usability is currently limited.

All the tools embedded in the framework are fully auto-
mated, they require at most the setting of few configuration
parameters to be run, and their execution follows the two-
staged execution pattern we previously outlined in Sect. 2.1.
First design models are automatically transformed into a
KLAPER-based intermediate representation, then such inter-
mediate models are transformed into an appropriate notation
(specific for each kind of analysis) compatible with the pre-
diction tool to be used. By doing so, engineers that want to
integrate new analysis tools into KlaperSuite or that want
to support new design notations can take advantage of the
existing transformations with a consequent reduction of the
development effort.

The whole suite is implemented as a plugin-based archi-
tecture within the Eclipse IDE. Extensions are possible by
plugging additional analysis modules and the corresponding
QVT model transformations.

The results of the analysis are then gathered from the
underlying analysis tool and saved with a plain text format
in the workspace.

Given the variety of formats supported by the underlying
analysis tools, the different needs of each engineering domain
and of each system architect, the current implementation of
KlaperSuite does not provide any default parser or rich inter-
face to show the results. However, we are currently work-
ing in this direction in order to implement parsers and rich
user interfaces for the currently supported quality-prediction
tools.

4 Models and tools for reliability analysis

This article focuses on the reliability-prediction capabilities
of KlaperSuite and on their validation. Thus, we concentrate
on them in this section and we provide an in-depth description
of the methodologies and tools supported by our framework.

3 http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/.
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(a)

(b)

Fig. 3 High-level view of KlaperSuite

In this paper, we will refer to reliability, in a broad sense,
as the probability of satisfying an assigned task [11]. Such
a definition is also referred to as “reliability on demand”
[26] and is particularly suitable for service-oriented archi-
tecture, where a service, once invoked, has a certain prob-
ability to be successfully executed. There are a number of
probabilistic models for software reliability [33]. Among

them, architecture-based approaches are frequently based
on discrete-time Markov chain (DTMC) models of the soft-
ware’s behavior [34]. KlaperSuite reliability analysis instru-
ments fall in this category.

DTMCs can be roughly seen as finite state-transition
automata where each state si has a certain probability pi j

to reach state s j . As for probability theory, for each state
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si , it holds that
∑

j pi j = 1. The states of a DTMC are
used to represent relevant states of the execution of a soft-
ware system. For example, in KLAPER a state may repre-
sent an internal activity or the invocation of a Service. In a
DTMC-based reliability analysis, it is common to extend the
model of the system with a set of states that represent meta-
conditions of the execution, that is, they correspond neither to
internal activities nor to external invocations, but they rather
correspond to failures or success. These meta-states are typi-
cally related to permanent conditions of the system, and thus
their counterpart in the domain of DTMCs is represented by
absorbing states, i.e., any state si such that pii = 1 is said to
be absorbing, with the immediate meaning that state si , once
reached, cannot be left.

Given a DTMC model of the software behavior, reliabil-
ity can be then rephrased as the probability of reaching a
convenient success state. KLAPER allows for the descrip-
tion of service-oriented architectures that can be automati-
cally translated into DTMC models. Each service behavior
is defined in a structured-programming fashion, by com-
posing activities through sequence, branch, loop, and fork-
join control structures. Each activity can be defined as a
black-box operation characterized by its own failure prob-
ability (Pf ), or as a white box with an associated internal
behavior (see Sect. 2). Moreover, each branch is labeled
with the probability of taking one or other possible alter-
natives.

Such structured behaviors can be translated into a corre-
sponding DTMC in a natural way by introducing a DTMC
state to represent the execution of each atomic step, and then
connecting them coherently with control structures [20]. We
give in Appendix A.1, the details about the actual rules we
adopt to implement this translation. In particular, the rule
adopted to implement the translation of Fork and Join struc-
tures into a DTMC is based on the assumption that parallel
activities fail independently of each other. In this respect, we
point out that this assumption, whose aim is to help in getting
a tractable model, is at the basis of other state-of-the-art soft-
ware architecture reliability models (see, e.g., [68]). Dealing
explicitly with the case of failure dependencies among par-
allel components would require a more general modeling
approach. How to devise it is the subject of ongoing research
[42].

Two complementary absorbing states (end and failure)
represent success and failure, respectively, and each node
is connected to the failure state with its own failure proba-
bility by rescaling the other transition by a factor 1 − Pf .
Intuitively, execution moves to the next state if and only if
the execution of the current step does not fail. Reaching the
end step of a KLAPER behavior means that the execution
has been successfully completed. The execution of software
modeled in KLAPER starts by executing the users’ behavior
as described in the workloads for the system. As a matter

of fact, reliability analysis is tailored to the expected usage
profile.

To conclude this introduction, we point out that the invoca-
tion of an external service corresponds to making a transition
toward its start state and then reconnecting its end state to the
next step after the invocation. This, however, leads to some
modeling issues in the case of recursive invocation. DTMCs
do not allow for recursive invocation, but require to unroll
the sequence of calls to a finite depth. We identified two dif-
ferent solutions to this issue. The first consists in limiting the
recursion to a depth where further invocations do not signifi-
cantly affect the reliability estimation, that is, the probability
of further invoking the service is low enough to make its
impact on software reliability negligible (given the desired
accuracy for the prediction). The second solution consists
instead in adopting a superclass of DTMCs named RMCs
[19]. These stochastic models extend DTMCs by allowing a
state to be recursively connected to another RMC, thus they
allow the explicit representation of recursion and provide a
suitable mathematical framework to compute the probability
of reaching the success state.

In the rest of this section, we present the two reliability
analysis tools supported by KlaperSuite. The first is based
on the probabilistic model checker PRISM [32], while the
second is based on an implementation of the algorithms to
analyze RMCs described in [19].

4.1 The PRISM-based tool

KlaperSuite is able to automatically transform a KLAPER
model into a form compatible for consumption by PRISM.
The input for PRISM consists of a DTMC model and a
property to be verified upon it. In our case, such a prop-
erty represents the probability of reaching the success state.
PRISM performs its computations using iterative numerical
algorithms [32]. These algorithms allow for computing the
requested probability with a desired (finite) accuracy, i.e.,
the difference between the real probability and the results
computed by PRISM will be lower than the given threshold.
KlaperSuite requires by default a maximum error of 10−12.

The translation of KLAPER models into PRISM inputs
allows also for further analyses on the software behavior,
besides the overall reliability on demand. PRISM in fact sup-
ports a wide range of properties to be verified apart from
reliability (for example it is possible to compute the failure
probability given that the process reached a certain state, or
the probability of completing a run without passing through
a certain state).

Finally, PRISM provides also process algebra constructs
to simulate function invocations through the concept of mod-
ule. Modules are DTMCs whose execution can be syn-
chronized to simulate the unrolling of function call chains.
Such unrolling is pursued iteratively until the analysis result
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converges to the desired accuracy. The drawback of function
calls unrolling lies in the exponential state-space explosion.
Our experience showed that even small KLAPER models
may not be tractable through PRISM in presence of recur-
sive invocations.

This issue motivated our research for a more efficient way
to deal with recursion, namely RMCs, which we present later
in this section.

4.1.1 The transformation

The automatic transformation from KLAPER to PRISM
inputs is realized in two steps. The first step consists
in a model-to-model transformation from KLAPER to an
intermediate meta-model that reproduces the structure of a
PRISM model. This transformation is implemented in QVT-
Operational, the imperative model-to-model transformation
language standardized by the OMG [30]. The second step is
a model-to-text transformation implemented in Xpand2 [18],
which generates the textual input files used by the PRISM
tool for the analysis. We defer to Appendix A.1 and Appen-
dix A.2 for details about the first and second step of this
transformation, respectively.

4.2 The RMC-based tool

As we mentioned before, a RMC can be seen as a collection
of finite-state Markov chains with the ability to invoke each
other, possibly in a recursive way. They have been introduced
in [19]. RMCs can be efficiently analyzed, by means of non-
linear equation systems, to compute reachability properties.
Thus, the probability of reaching the success state can be
formalized in this framework.

Referring to [19], KLAPER behaviors can be classi-
fied as 1-exit control flows. 1-exit control flows are control
flows which have only one single end state, a property that
allows the verification of any reachability property in P-time.
Despite the theoretical worst case complexity, in most prac-
tical cases RMC analysis can be performed in reasonably
short time (see Sect. 5). In KlaperSuite, we support both the
basic solution algorithm for RMC and the Newton variant,
that exploit the popular Newton method to reduce the number
of iterations needed to reach the fixed-point solution. Both
the algorithms are described in details in [19].

If time complexity is an advantage of RMCs, by contrast
they are suitable only for reachability analysis and hence,
within KlaperSuite, only for the evaluation of the overall
reliability on demand. As a matter of fact, the analysis of
more complex properties—such as the ones we mentioned
for PRISM—cannot be, in general, easily verified with these
models.

Compared to PRISM, the RMC-based analysis can handle
very large models with recursive invocations. The accuracy

of results is arbitrary also for this tool and set by KlaperSuite
to the default 10−12 value.

4.2.1 The transformation

The first step of the transformation from KLAPER to RMC is
the same model-to-model transformation we use for PRISM.
From the intermediate PRISM-tailored model, KlaperSuite
extrapolates a system of equations that is directly solved by
our Java implementation of the iterative algorithms described
in [19], without any need for external tools. We provide both
the basic fixed-point algorithm and its optimization via the
Newton method to speed up convergence (pros and cons of
basic and Newton methods are discussed in [19]). We defer
to Appendix A.1 and Appendix A.3 for details about the first
and second step of this transformation, respectively.

5 Empirical validation

In this section, we describe the results of the empirical val-
idation we conducted for the reliability analysis features of
KlaperSuite. The validation comprises four case studies—
the first three have been extracted from the existing litera-
ture while the last one has been derived from an industrial
system—and has been conducted as follows. The complete
KLAPER models of each test case, and the corresponding
analysis reports, can be downloaded from http://home.dei.
polimi.it/filieri/2011sosym.

The three literature-based case studies have been extracted
from [11,24] and from [38,43,71]. Section 5.1 describes
them in detail and outlines the results of the empirical val-
idation. For the first two case studies [11,24], the avail-
able literature does not provide complete design models,
but only their formalization through DTMCs models. Our
experiments have thus been conducted by reverse engineer-
ing from those DTMC models the corresponding KLAPER
models, and by proceeding according to the usage scenario a
described in Sect. 2.2. For the third case study—the business
reporting system (BRS) case study [38,43,71]—high-level
design models were instead available, we directly used them
for the experiment, and we proceeded according to the usage
scenario b described in Sect. 2.2. The purpose of evaluating
KlaperSuite via these case studies is twofold: first, we intend
to validate the mathematical infrastructure of KlaperSuite
by comparing our predictions with the results described in
the original literature; second, we intend to verify the effi-
ciency of the various reliability-prediction tools embedded
in KlaperSuite. With respect to the first goal, all the analyses
of problems for literature matched the results provided in the
original papers, up to the accuracy there reported.

Concerning efficiency and scalability, we have also con-
ducted a extensive set of experiments where randomly
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generated large KLAPER models have been tested to stress
KlaperSuite analysis features. The results of these experi-
ments are reported in Sect. 5.3.

Finally, the industrial case study described in Sect. 5.2
has been instead conducted in collaboration with ABB and
is based on the corresponding case study developed for the
Q-ImPrESS project.4 Q-ImPrESS provides a model-driven
methodology and an Eclipse-based development environ-
ment supporting the design of complex software systems and
the analysis of their reliability, performance and maintain-
ability attributes at an architectural level. Q-ImPrESS pro-
poses the adoption of the service architecture meta-model
(SAMM) [56], a new abstract design notation to describe
both the structure of the system with a component-based par-
adigm and the QoS of each constituent. QoS is then estimated
by deriving prediction models from SAMM design models,
and using tools (such as KLAPER for reliability properties)
to concretely perform the estimations. Since also Klaper-
Suite leverages the KLAPER intermediate language, it has
been relatively easy to apply the same case study used for
Q-ImPrESS also for our validation. However, in this case,
the aim of the experiments we performed is different from
the literature-based case studies. Here, we intend to show
that KlaperSuite also scales in industrial settings and that
the predictions computed by our framework are sound and
compatible with real measurements.

5.1 The case studies extracted from the literature

Every case study described here has been modeled in Klaper-
Suite and analyzed with both the PRISM and the RMC-based
tools. For each case study, we give results concerning both the
space and time complexity of the resulting Markov model.
For the former aspect, we give in Appendix A.1, the details
about the translation process from KLAPER to Markov
model, that show that we should not expect large increase
in the size of the obtained Markov model with respect to
the original KLAPER model (our experiments confirm this
point). For the latter aspect, the two solvers exhibit in general
different performances, depending on the characteristics of
the models being analyzed. For example, the way the mod-
eled components are involved in the control flow (i.e., either
using recursion or using loops) is an example of such char-
acteristics. In particular, when recursion is heavily present in
the KLAPER model, our experiments show that managing
it with process algebra in PRISM could lead to poor perfor-
mance if compared with the RMC-based analyzer.

Defining which characteristics of the control flow can be
used to drive the selection of the analysis tool is still a matter
of investigation. However, in Sect. 5.3, we describe the results
that we have obtained with our random models generator and

4 http://www.q-impress.eu.

Table 1 KlaperSuite analysis of Cheung’s [11] model

Prism model states 20

Prism model transitions 46

Prism execution time 2,574 ms

RMC number of equations 16

RMC execution time 1,771 ms

RMC execution time with Newton method 27 ms

we give some glimpses on the role of model topology and
dimensions on the performance of the solution tool.

5.1.1 User-centered reliability

The work described in [11] is among the first works using
DTMC to perform reliability analyses, and is the first aim-
ing at formalizing the role of the users to characterize
the behavior of software systems. The role of the users,
i.e., a probabilistic profile of the incoming requests, has
been modeled via KLAPER Workloads. The control flow
of the application has been instead derived from the DTMC
described in the original case study, which implicitly defines
it. The DTMC process has been inferred statistically from
the number of invocations from one component to another.
With only this information, the control flow cannot be
easily restated in a structured programming form—since
DTMCs can represent also loops not directly expressible
via structured programming—nor we can assume any recur-
sion. As a matter of fact, for the case study we defined a
KLAPER-based model leading to the DTMC described in
the original work. The obtained KLAPER model consists of
1 resource, 1 service, 22 transitions, and 10 internal fail-
ure probabilities. The reliability obtained with KlaperSuite
is 0.8299408117043016 versus the 0.8299 given in the paper.

Table 1 shows the results we obtained by running this case
study. In particular, it shows and compares the performance
of the two analyzers (PRISM and RMC).

In this case, the performance of the PRISM-based tools
and of the basic implementation of the RMC-based tool are
comparable (though PRISM takes more time because of the
external process invocation). The use of Newton method to
analyze the same problem leads to faster convergence of the
algorithm with significant improvement in computation time.

5.1.2 The GCC case study

In [24], the authors propose an empirical analysis of the Gnu
Compiler Collection (GCC) C compiler version 3.2.3. The
analysis framework used in [24] requires a component-based
model of the software system being analyzed (similarly to
KlaperSuite), and the model has been extracted from the
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Table 2 KlaperSuite analysis of Goseva-Popstojanova’s [24] model

Prism model states 23

Prism model transitions 118

Prism execution time 2,553 ms

RMC number of equations 19

RMC execution time >20 min

RMC execution time with Newton method 101 ms

source code. In the original work, the authors instrument
the compiler with a profiler and run a large test suite. The
information from the compiler has then been used to derive
a component-based model of the software, to determine the
software architecture, and to describe the failure behavior
of each component. The original experiments identified 85
failures with a regression test executing the test suite from a
more recent version of the compiler (3.3.3). As we did for
the previous case study, a KLAPER-based model has been
defined to lead to a DTMC that matches the one in [24].

The obtained KLAPER model consists of 1 resource, 1
service, 22 transitions, and 13 internal failure probabilities.
The reliability obtained with KlaperSuite is 0.999762602564
1249 versus the 0.9997 given in the paper.

Table 2 shows the results we obtained by running this case
study. The RMC-based analysis has been interrupted after
20 min since, as explained in [19], a basic fixed-point solver
may suffer of too slow convergence. Running the Newton
method on the same model instance provided instead the
result in hundreds of milliseconds.

5.1.3 The BRS case study

The last literature-based case study concerns the analysis of
a BRS with KlaperSuite. The BRS system has been used in
several former papers [38,43,71] as a case study for perfor-
mance and reliability prediction of component-based soft-
ware systems.

The BRS is a web-based system, which provides
managers with access to a number of key performance indi-
cators of their enterprise. It allows monitoring the current
values as well as generating detailed reports aggregating for-
merly recorded data. Figure 4 depicts the SAMM-based [56]
model of the system with several selected Behaviors. The
BRS consists of five components deployed on four servers
and includes nine Behavior specifications in total. The inter-
nal failure probabilities for the steps in the behaviors have
been estimated based on the complexity of the involved cal-
culations and on experience with similar systems (see Sect. 6
for a discussion on this topic).

The KLAPER model automatically generated from the
SAMM model by KlaperSuite consists of 7 resources, 66

steps, 51 transitions, and 11 internal failure probabilities. For
space reasons, we do not illustrate it here. After the first
transformation step, KlaperSuite transforms the intermediate
model into a DTMC within half a second on a regular PC. The
result is a DTMC model with 200 states, and 403 transitions.

KlaperSuite estimate the reliability of the BRS system
in 0.9986512518492634, the corresponding estimation com-
puted by the PCM toolchain is 0.99865, for the same version
of the system.

Table 3 shows the computation time of reliability analysis
with PRISM and RMC. Notice that, in this case, the exe-
cution time of the Newton solver for RMC is significantly
longer than the execution with the basic algorithm. The BRS
KLAPER model, despite the number of equations, presents a
few loops in its control flow (actually, only some loops with
Repetition attribute equal to two). This allows to make the
equation solver quickly converge to a fixed point. Indeed,
in complete absence of loops, known values take at most as
many iterations of the basic solver as the number of equa-
tions to be propagated, leading to the solution. Each iteration
of the basic solver takes a short time to be accomplished. On
the other hand, each iteration of the Newton solver requires
extra time to compute the next step of the iterative algorithm.
Such an extra time is not compensated by the reduction in
the number of iterations, leading to the poor performance of
the solver.

We also used KlaperSuite to perform a sensitivity analysis,
i.e., the identification of the components mostly contributing
to the system reliability [11]. We imposed small variations
to single component’s internal failure probabilities and ana-
lyzed the corresponding variation on the overall reliability
on demand of the system. We point out that we limit to these
parameters the sensitivity analysis, as the uncertainty in the
model mainly stems from them, rather than from other para-
meters like the transition probabilities. The latter indeed are
part of the description of the model structure, which resem-
bles the system structure and is assumed to be given and not
subject to significant changes.

Figure 5 shows that the curves for “AcceptView” and “Pre-
pareViewing” have the highest slopes, thus the system relia-
bility is most sensitive to them. The system is less sensitive
to the other actions, i.e., improving their reliability has only
a minor effect on the overall system reliability on demand.
The actions related to viewing have a higher impact, because
of the much higher volume of invocations they receive.

5.2 The industrial-based ABB case study

This case study analyzes a large-scale industrial Process
Control System (PCS) from ABB [39]. The goal here is to
demonstrate that KlaperSuite can also deal with large and real
models. Furthermore, we also want to show that our frame-
work is able to find the components mostly contributing to
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Fig. 4 The SAMM architectural model of the business reporting system (BRS)

Table 3 KlaperSuite analysis of the BRS model

Prism model states 200

Prism model transitions 403

Prism execution time 2,762 ms

RMC number of equations 170

RMC execution time 32 ms

RMC execution time with Newton method 3,507 ms

Fig. 5 Reliability predictions for the business reporting system

the system reliability so that effective improvement measures
could be identified and applied.

The ABB PCS system is used in different industry
branches, such as power generation, chemical processes, or
material handling. It provides access to a number of sensors

and actuators built into an industrial process for supervision.
Human operators get a graphical visualization of the most
important process values and can interact with the system
(e.g., stopping pumps or opening valves).

Figure 6 shows a high-level overview of the system as
modeled using the Q-ImPrESS tools. It consists of 28 com-
ponents, which are deployed on three servers. There are more
than 30 services modeled for this system, which we cannot
show here for space reasons. The internal failure probabilities
for the Steps of the services had been determined in a for-
mer case study [39] using software reliability growth models
based on an analysis of the PCS’ bug tracking system.

The automatically generated KLAPER model of the sys-
tem consists of 34 resources, 217 steps, 167 transitions, and
8 internal failure probabilities. We omit showing details of
this model here for space reasons. KlaperSuite mapped the
model to a DTMC model with 275 states, and 261 transi-
tions. The execution time for the PCS case is reported in
Table 4.

Table 4 reports the computation time of reliability analysis
with PRISM and RMC. In this case, PRISM fails to build
the model for a memory space problem, while the execution
time of the RMC solver with the Newton method takes quite
a long time. This case is similar to BRS one: each iteration of
the Newton method is very expensive. Although the number
of iterations is much lower than the basic case, this does
not suffice to compensate the cumulative cost of the Newton
method extra computations.
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Fig. 6 ABB PCS system

Table 4 KlaperSuite analysis of the ABB PCS model

Prism model states 275

Prism model transitions 261

Prism execution time NA

RMC number of equations 552

RMC execution time 118 ms

RMC execution time with Newton method 104,933 ms

Fig. 7 Reliability predictions for the ABB PCS

We performed a sensitivity analysis of the model to
identify the most critical services in the system. Figure 7
depicts how the system reliability changes if we change
the failure probability of four exemplary steps. The figure
leaves out the concrete system reliability values as well
as the actual names of the steps for confidentiality rea-
sons.

It can be seen that the steps 1 and 4 have the highest impact
on the overall system reliability on demand, which consider-
ably decreases with a decrease of their internal failure proba-
bilities. Steps 2 and 3 only have a minor impact on the overall
system reliability. Reliability improvement measures should
then focus on the software piece responsible of steps 1 and

4, e.g., by conducting more testing or implementing fault
tolerance mechanisms.

5.3 Scalability tests

In this section, we show the results of scalability tests con-
ducted on the KlaperSuite.

As already discussed in Sect. 4 and empirically shown
in the industrial case study (cf. Sect. 5.2), PRISM is not
suitable for the analysis of recursive models, but for simple
cases where the unrollment of function calls quickly makes
the approximation accurate enough. For this reason, we ana-
lyzed non-recursive models comparing PRISM and RMC
execution time. Due to the absence of recursive calls, RMC-
Newton has been omitted from the comparison because its
computational overhead is not justified in absence of recur-
sive calls and its execution time exceeded by orders of mag-
nitude than that of the other solvers in our tests. The reader
interested in an empirical comparison of the execution times
of the RMC algorithm and its Newton variant can refer to
[19].

All the experiments have been conducted on an Intel Pen-
tium D 3 GHz with 2 Gb of RAM, Debian 6.0.5 32 bit.

All the KLAPER models have been randomly generated.
The random generator allows to set the number of services,
and, for each service behavior, the number of activities, the
number of branches, and the number of service invocations.
For each observation we took ten samples and reported their
average value.

In the first test-suite, we analyzed a model containing a
variable number of small services. Each service behavior is
composed by five activities and one branch. Each service
invokes 2 ± 1 other services.

Figure 8 shows the result of this comparison. On the x axis
we reported the total number of activities, that is the number
of services (from 2 to 26) times five activities per service.

123



www.manaraa.com

1282 A. Ciancone et al.

Fig. 8 Tools comparison: small-size services

Fig. 9 Tools comparison: medium-size services

Notice that the y axis is in logarithmic scale to evidence the
difference in order of magnitudes of the two solvers. Indeed,
RMC-based outperformed PRISM with a relative speedup
up to three order of magnitude for the largest models. For
models with 22 services or more, PRISM took more than 2 h
and has been interrupted.

In the second test suite, we considered medium-sized ser-
vices, each containing from 25 to 45 activities. Each service
behavior contains at least one branch node and 2 ± 1 invo-
cations of external services. In Fig. 9, we reported on the x
axis the total number of activities, obtained by multiplying
the number of services (from 10 to 12) times the number of
activities per service (from 25 to 45).

The two solvers showed in this case, a comparable per-
formance for the largest instances, but PRISM outperformed
RMC for smaller cases.

From Figs. 8 and 9, we can deduce some information about
the factors that mostly affect the scalability of the two tools,
namely number of services and number of activities per ser-
vice.

For PRISM analysis, each service is mapped, by the model
transformation procedure, to a module (cf. Sect. 4.1). Before
starting the actual analysis, the model checker needs to build
the actual state space of the model, that is the cartesian prod-
uct of the local state space of each module. This phase is
time-consuming and mostly depends on the number of ser-
vices. For this reason, in Fig. 8 PRISM, execution time grows

Fig. 10 Tools comparison: large-size services

so quickly. The quick growth in RMC performance is instead
due to the number of service invocations. Indeed, each of
these introduces a non-linear equation in the system to be
solved, slowing down the convergence [19]. Since there are
2±1 invocations per service, the number of non-linear equa-
tions grows linearly with the number of services in this set-
ting.

On the other hand, the size of the different behaviors (i.e.,
the number of activities they are composed by) has a smaller
impact on the execution time of both the solvers, if compared
to the number of services. In Fig. 9, the performance of the
two tools is comparable when the number of services is small,
and coherent with the previous experiment. Indeed, PRISM
execution time increases significantly when more than ten
services are introduced, because of the impact of the state
space building. For a smaller number of services, PRISM
state construction and the number of non-linearities in the
equation system of RMC play a minor role; in this setting,
most of the time of both PRISM and RMC is spent in solving
the respective systems of equation. This make the optimized
numerical routines of PRISM outperform our Java imple-
mentation of the basic solution algorithm for RMC [19]. On
the other hand, the solver used by PRISM is defined for lin-
ear systems only, while RMC, though slower on linear ones,
can deal also with the non-linearities introduced in case of
recursive calls [19].

Further evidence of this conjecture comes from Fig. 10,
where only two services have been defined with a number of
activities from 25 to 100 for each of the two. In this setting, the
impact of model construction for PRISM is negligible with
respect to the time required by the numerical procedures,
making PRISM more efficient than RMC.

5.4 Summary of the validation

In this section, we modeled and analyzed with KlaperSuite
a set of case studies extracted from the literature, from an
industrial setting and from randomly generated models. The
validation showed that KlaperSuite is able to deal with the
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complexity of each case study, although the adopted predic-
tion tools performed differently. Indeed, the obtained results
show that for each specific scenario a tool may outperform
the others.

The three solvers introduced in the previous sections differ
for the amount of information provided and the suitability for
specific problems.

In general, the use of PRISM provides, besides the estima-
tion of the expected system reliability, the complete PRISM
input. Such an input could be a good source of information for
expert users that could possibly run further analyses of their
systems. Indeed, apart from computing the overall reliability,
the model checker can be employed for finer grain analysis,
e.g., for computing the probability of hitting a failure after
a certain operation has been performed. Access to this finer
grain analysis is out of the scope of KlaperSuite and requires
some mathematical skills from the user. On the other hand,
the generated PRISM models are not tailored to KlaperSuite
analysis and embed all the available information about the
artifact. Hence, KlaperSuite can be exploited also to translate
KLAPER models to PRISM for further investigation.

If the KLAPER models do not contain any recursive func-
tion call, the use of PRISM or RMC provided comparable
performance on our low-power machine if the number of
services is between 10 and 20. The gap between PRISM and
RMC appears more evident in case the model contains a
few large services. In such a case, the optimized algorithms
of PRISM outperform our Java-based solver for RMC. A
currently unexploited alternative is to use an external tool,
such as Matlab, to solve the set of equations generated for
RMC. This could provide significant improvements thanks
to optimized algorithms, topology-based heuristics, and out-
of-the-shelf parallelization capabilities.

In presence of recursive calls, PRISM tries to unroll the
recursive calls until the required analysis accuracy is met.
Such a process, besides being time-consuming, may result in
out of memory exceptions due to the need to store the large
state space derived from the unrolling. In such cases, a RMC
approach is recommended.

The choice between RMC base and the Newton variant has
to be considered as a trade-off. Indeed, the base implemen-
tation requires more iterations to converge, but each single
iteration is extremely efficient, being no more than the eval-
uation of n arithmetic expressions (where n is the number of
derived equations). On the other hand, the Newton variant
requires less iterations, but each of them is time-consuming,
since it requires to evaluate n2 derivatives. The effectiveness
of the Newton method is significant when the chain of recur-
sive calls can become quite long. In all the other cases, the
effort required in each iteration overcomes the benefit of per-
forming a smaller number of them. Empirical evidence of this
claim has been provided in Sect. 5.3; a theoretical complexity
analysis of the two variants can instead be found in [19].

As a final remark, from the industrial case study of
Sect. 5.2, we would like to underline that design models,
being abstraction of the implemented system, may capture
relevant architectural aspects in relatively small KLAPER
instances. Indeed, the large-scale process control system
from ABB, resulted in 28 components and 30 services, for
a total of about 250 activities. The model presents also an
high level of interdependency among the components, cap-
tured by several recursive invocations. Though the analysis is
not feasible with the PRISM-based solver, such a complex-
ity is within the computation capabilities of the RMC solvers
included in the current version of KlaperSuite.

6 Related work

In the last years, the need for including early quality predic-
tion in the software development process has been widely
recognized. In particular, there has been an increasing inter-
est in model transformation methodologies for the generation
of analysis-oriented target models (including performance
and reliability models) starting from design-oriented source
models, possibly augmented with suitable annotations. Sev-
eral proposals have been presented concerning the genera-
tion of performance or reliability analysis models, some of
them suggest a direct model generation while others suggest
the use of intermediate models. In this section, we briefly
summarize these approaches and some other topics closely
related to these transformations, such as the already cited
feedback provisioning step and the open problem of the model
parameter estimation.

Direct reliability-prediction methods Reliability-prediction
methods for software architectures have been surveyed in
several papers [22,26,34]. Almost all of these approaches
use a DTMC or CTMC model to describe the control flow
between components and respective solver tools to conduct
reliability predictions. Some approaches require the software
architect to directly work with the Markov-model notation
(e.g., [23,61,63,68]), which might discourage practitioners
because of the semantical gap to the architectural models
they commonly use (e.g., in UML).

Therefore, several approaches (e.g., [14,25,55,59,73])
have proposed the use of a high-level modeling notation
(e.g., UML sequence and deployment diagrams), annotated
with the necessary reliability data (e.g., component transition
probabilities and internal failure probabilities). Transforma-
tion tools map these high-level models into Markov chains,
so that standard solvers can execute reliability predictions
with the transformation output. The benefit is that develop-
ers can reuse their existing UML model and only need to
provide additional reliability annotations. Furthermore, the
mathematical details of the prediction methods can be encap-
sulated into tools and thus be transparent to the developer.
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This class of approaches can be further divided into
scenario-based approaches (e.g., [55,59,73]) and UML-
based approaches [14,25].

From the scenario-based approaches, Yacoub et al. [73]
manually create component dependency graphs out of
sequence diagrams, which are then processed by tools.
Rodrigues et al. [59] sketch a transformation from message
sequence charts to DTMCs and also propose an implementa-
tion [60]. However, the tools for both approaches are not pub-
licly available. Popic et al. [55] extend the ECRA tool for reli-
ability analysis, so that it accepts UML use case, sequence,
and deployment diagrams.

From the UML-based approaches Cortellessa et al. [14]
propose a mapping from UML diagrams into Markov models,
but also provide no tool support. Goseva et al. [25] use UML
sequence diagrams and Marko models in their approach and
mention that the implementation of a tool would be straight-
forward. However, up to today such a tool has not been pro-
vided.

In contrast to other approaches, KlaperSuite is fully imple-
mented and available for third-party testing. Moreover. the
approaches described above focus exclusively on reliability
prediction, whereas KLAPER also support performance pre-
dictions.

Reliability prediction through intermediate models The
large gap between design-oriented and analysis-oriented
models can make direct transformations like the ones summa-
rized above quite complicated. A different way to deal with
transformation complexity is to pass through an intermedi-
ate model (the “kernel”) by pruning the information from
the design model that is not needed to execute the desired
analyses, but still retaining the needed one. One of the first
proposals along this direction (albeit in a different context
from non-functional requirements analysis of component-
based systems) can be found in [36], where the kernel lan-
guage is called a “pivot meta-model”.

Among the transformation approaches that make use of
intermediate models, Petriu et al. [54] proposed the CSM
(core scenario model). CSM is a MOF compliant kernel
meta-model, specifically related to performance analysis.
Transformation from UML to CSM and from it to differ-
ent performance models are provided. Gu et al. [31] pro-
posed, in a similar way, their own intermediate meta-model
to transform UML model with performance annotations to
performance modeling formalisms.

With respect to the kernel languages of [31,54], KLAPER
is intended to serve also for reliability and, possibly, trade-
off analysis between performance and reliability. KLAPER is
specifically targeted to component-based systems and it has
been applied for the analysis of performance and reliability
using Queuing Networks and Markov models [29] and expe-
rienced with the CoCoME case study [28,58]. Extensions of
KLAPER have also been proposed to analyze self-adaptive

[27] and reactive [52] systems. In these works, the KLAPER
models have been designed manually, without using any
automated transformation tool.

Feedback provisioning As pointed out is Sect. 2.1, besides
considering the linking from design-oriented to quality-
oriented models, also the opposite direction should be con-
sidered, to give automated support to bring analysis results
back to design models. This research area has received some
attention in the last years and is called feedback provision-
ing. Its goal is to give support to possibly non-experienced
engineers and guide them in the selection of an appropriate
design solution when issues concerning quality attributes are
detected by means of analysis tools.

The kind of feedback to provide and the way to provide it
depend on the adopted methodology, and some (partly auto-
mated) approaches have been already proposed in the litera-
ture. Examples are

• rule-based approaches: they rely on a set of domain-
specific predefined rules to identify potential quality-
related problems and to suggest modifications to the
system models. These approaches, however, present sev-
eral drawbacks: human intervention is required, every
approach defines its own language to specify rules, and
rules propose solutions only for simple issues and at the
level of quality-prediction models (i.e., manual interven-
tion is required to translate the suggested changes to the
abstraction level of design models) [13,44,51,72].

• meta-heuristic approaches: they leverage specific algo-
rithms to explore the alternatives space and to propose
different complete system solutions satisfying certain
quality criteria. The algorithms used by these approaches,
however, limit the set of supported quality attributes, the
set of supported exploration directions, and are tailored
to specific modeling environments [1,9,43].

• design space exploration (DSE) frameworks: they work
similarly to meta-heuristic approaches, but the alterna-
tives space is explored by encoding the problem as a
Constraint Satisfaction Problem (CSP). Although DSE
approaches are extremely efficient, they suffer from the
same kind of problems outlined for meta-heuristic tech-
niques [35,47,62].

• model-driven approaches: they rely on the possibility of
exploring different design alternatives and feeding back
the results to software designers exploiting the capabili-
ties of quality driven model transformations [17,46].

Model parameter estimation Another open issue in the
field of quality-driven model generation concerns the per-
formance and reliability model parameters estimation [10,
22,39,64]. Several methods have been defined and applied.
They are mainly based on estimations derived from mea-
surements on the running software or on estimations derived
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from similar applications or finally from educated guesses
based on the experience of the software engineers [10,64].
In particular, in [39] different data collection methods for the
estimation of failure probabilities are described. They can
be based on the use of code metrics (such as lines of code),
reliability growth models [41], fault injection techniques [24]
and/or statistical testing [45]. Each of them presents pros and
cons and the problem of failure parameter estimation is still
a matter of debate and investigation.

Automated environments Despite the existence of several
methods (both direct and based on intermediate models)
that apply automated transformations to generate analysis-
oriented models, still few integrated environments exist that
include a family of tools empowering designers with the
ability to capture and analyze the performance and reli-
ability figures of their systems. PUMA [69], e.g., pro-
vides a model-driven engineering framework that adopts
CSM as intermediate language to predict performance via
LQN or Stochastic Petri Nets starting from UML mod-
els augmented with MARTE profile compliant annotations.
Another notable example of a MDE framework to support the
development of analysis transformations for non-functional
properties is given by Palladio–Bench [50]. This framework
is centered around Palladio, a newly developed component
model [6], and integrates modeling, simulation/analysis, and
result viewing in a single software tool. Both performance
and reliability analysis are supported and can be analyzed
based on the same Palladio model.

KlaperSuite lies in this research area and provides a fully
automated and integrated environment including a family
of tools empowering designers with the ability to capture
and analyze the performance and reliability figures of their
systems. The possibility of using different verification tools
together with a simulation-based analysis tool could make
KlaperSuite a valuable instrument for predicting software
qualities during the development process.

7 Conclusions

In this article, we presented KlaperSuite, a MDE-enabled
toolchain to support analysis of non-functional attributes for
component-based system since early stages of development.
KlaperSuite reduces the gap between design and analysis
models exploiting the pivot language KLAPER, that allows
to represent both common design concepts and quality anno-
tations in a unified model.

KlaperSuite includes a set of automatic model transforma-
tions from KLAPER to stochastic analysis models, that can
be solved within the suite by means of established solvers,
such as the probabilistic model-checker PRISM. The results
of analysis are captured by the suite and presented to the
designer in a fully transparent way.

The main benefit of KlaperSuite is to enable the access to
a comprehensive QoS analysis suite by implementing a sin-
gle transformation from the preferred design model toward
KLAPER. Hence, designers are empowered with the ability
to analyze their systems, with established analysis instru-
ments, in a seamless and integrated environment, without
the burden to deal with each single instrument by hand.

In this article, we specifically focused on the validation of
the reliability analysis features of KlaperSuite and we pre-
sented an in-depth description of how the analyses are per-
formed. To show the effectiveness of KlaperSuite, we vali-
dated our approach using a set of literature-based and indus-
trial case studies. The industrial case came from the model
of a large-scale PCS and showed the ability of the reliabil-
ity analyzers to deal with real-life problems. Furthermore,
we analyzed a set of randomly generated problems to show
the scalability of the suite and to compare different analysis
backends.

We are currently working on extending KlaperSuite to
deal with more QoS properties. Specifically, we are integrat-
ing LQN-based verification for time performance analysis
and a simulator for KLAPER models, based on SimJava. We
are also planning to implement model transformations from
higher level design languages (first of all certain subsets of
UML) to KLAPER, for the sake of making KlaperSuite eas-
ier to integrate in established development settings.

Appendix A: The KLAPER transformations

This appendix describes all the automatic model transforma-
tions defined in KlaperSuite to generate a reliability analy-
sis model starting from a KLAPER model. First, the model
transformations are introduced, explaining their contexts and
relations, then each transformation is detailed in a separate
section.

As we pointed out in Sect. 4, KlaperSuite supports two
back-ends to carry out reliability analyses: one relies on sto-
chastic model checking and PRISM, the other is based on
the RMC methodology. Each analysis back-end has its own
reliability model, but their generation has in common a first
model transformation that maps an input KLAPER model to
an output Markov model (MM). KlaperSuite then provides
two model transformations from the intermediate MM to the
back-end specific model that will be used to perform the
analysis. This two-stages transformation approach is illus-
trated in Fig. 11.

When PRISM is used to perform the analysis, a model-to-
text transformation takes care of generating a textual repre-
sentation of the Markov model compatible with the PRISM
model checker input format; in case of RMC, starting from
the Markov model, a system of equations—whose solu-
tion provides the reliability predictions for the system—is
extrapolated.
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Fig. 11 The KlaperSuite transformations

Figure 12 outlines the structure of the meta-model which
we use to represent intermediate Markov models during the
whole transformation process. This meta-model contains the
concepts that may be found into DTMCs, with some tweaks
to take advantage of some PRISM features such as Modules.
In practice, we represent the different behaviors of a system
via Modules; each Module is then internally described by
means of Nodes and Transitions.

A Node has several attributes defining characteristics such
as its type (basic, start, end, and failure). Start nodes repre-
sent the initial state of a Module, end nodes and failure nodes
represent instead standard stop and failure stop states for a
Module, respectively. Basic nodes are used for all the other
nodes in Markov models. Each kind of Node must satisfy
a well-defined set of validity constraints. Basic nodes must
have at least one inbound transition and one outbound tran-
sition. Start nodes must have an outbound transition and no
inbound transitions. End nodes and failure nodes must have

at least one inbound transition without any outbound transi-
tion. In practice, a Module is a directed graph with exactly
one start node and one end node. This can be granted by
checking that, for every Module and for every Node, except
for failure nodes, a path exists between the start node and
the considered node and between the considered node and
the end node.

Finally, we distinguish among two kinds of transitions:
Standard transitions and Call transitions. In both cases, a
constraint specifying that the connected Nodes belong to the
same module must be satisfied. Call transitions must in addi-
tion specify the module that will be called when the transition
fires.

In the next sections, we detail the model transformations
used by KlaperSuite. Section A.1 describes the transforma-
tion from KLAPER to MM, while Sects. A.2 and A.3 present
the MM to PRISM and the MM to RMC transformations,
respectively.

A.1 From KLAPER to Markov models

The model-to-model transformation from KLAPER to
Markov models is implemented in QVT-Operational, the
imperative model-to-model transformation language stan-
dardized by the OMG [30]. Briefly, a QVT-Operational trans-
formation is composed by a set of functions that define oper-
ationally how a set of source elements is mapped to a set of
target elements.

In this transformation, we map each KLAPER Service to a
MM Module, while each KLAPER Behavior is mapped to a

Fig. 12 The Markov model meta-model
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set of MM Nodes and Transitions, representing the Steps and
the Transitions contained in the Behavior. KLAPER Work-
loads are mapped in the same manner, but in this case the
Nodes and Transitions correspond to the Workload Behavior.

A mapping function is defined for each type of KLAPER
Step. For some Steps (Start, End, Branch, Join, and Service-
Control) a corresponding MM Node exists, they are thus
mapped one-to-one and connected according to the Tran-
sitions in the KLAPER model. Other Steps such as Activities
and Forks require a more articulated mapping, as explained
in the following.

A KLAPER Activity step could define a nested behavior—
describing its internal behavior—and a repetition attribute—
indicating the number of times the activity will be repeated
in case of failure. For this reason, in general, this step is
mapped to a set of MM Nodes and Transitions. More pre-
cisely, the Activity internal behavior is mapped to a set of
MM Nodes and Transitions according to its structure, and
this mapping is replicated as many times as it is indicated
by the value of the Repetition attribute. This leads to a linear
increase (proportional to the Repetition value) of the num-
ber of MM nodes with respect to corresponding step in the
original KLAPER model. In this respect, we also note that, as
remarked in Sect. 2.3, besides using the Repetition attribute to
model loops, KLAPER also supports the probabilistic model-
ing of guard-controlled loops, by a suitable use of the Branch
step. This kind of modeling naturally matches cyclic struc-
tures of MM nodes, and thus leads to no increase in the num-
ber of MM nodes with respect to corresponding steps in the
original KLAPER model.

Fork is the other kind of step requiring a special handling.
A model may include several Fork control steps from which
different execution flows are spawned that are then executed
in parallel until a Join element is reached. The semantics is
similar to the semantics of the corresponding concepts for
UML. From the perspective of reliability, the global reliabil-
ity of a Fork-Join block corresponds to the probability that
all the actions performed in the parallel execution flows do
not experience any failure. More formally, we may define the
global Fork-Join block reliability as

∏
j r j , where r j is the

reliability of the j th spawned flow. As already said in Sect. 4,
this formula holds under the assumption of independent fail-
ures among spawned flows. This formula can be represented
in MMs by serializing the parallel execution flows, i.e., Fork-
Join blocks are transformed by mapping each action execu-
tion in the spawned execution flows in a sequence of Nodes
and Transitions, which are then chained together in a possible
sequence.

In general, a KLAPER Transition is mapped to the cor-
responding MM StandardTransition, except for outbound
Transitions from a ServiceControl step. If this is the case,
KLAPER Transitions are mapped to CallTransitions linked
to the called Module.

A.2 From Markov models to PRISM files

This transformation is a model-to-text transformation imple-
mented in Xpand2, a template language created by openAr-
chitectureware [67], which is integrated in Eclipse Modeling
Project. This transformation generates the textual representa-
tion of the PRISM model to be provided as input to the model
checker. It produces two files, the PRISM model file and the
PRISM properties file. The generation of the PRISM model
file is straightforward. It contains the same information of the
intermediate model in a textual representation. The PRISM
properties file contains instead the definition of the system
reliability properties which will be checked by PRISM in the
form of the PCTL* expressions, as detailed in Sect. 4.1.

PRISM is based on the Reactive Modules formalism
described by Alur et al. in [2]. As a consequence, com-
mands to regulate the state transitions among modules must
be defined. In detail, each Module in the MM representation
is transformed into the corresponding PRISM concept, and
suitable commands to specify how the modules interleave are
generated. For example, in the case of CallTransitions, suit-
able commands are generated to synchronize the interleaving
between the caller module and the called module.

A.3 From Markov models to RMCs

The model-to-text transformation from MMs to RMC is
implemented in Java and generates a system of equations
to compute the expected reliability. The system reliability
can be calculated with arbitrary precision from the generated
set of equations, as detailed in Sect. 4.2.

In the transformation, a MM Node is transformed into an
equation defining the Node reliability, which in turn depends
on the reliability of the connected outTransitions and of the
related Nodes. In particular, the reliability of the i th Node is
defined as

∑
j pi j ∗ r j , where r j is the reliability of the j th

Node and pi j is the outTransition probability of the transition
connecting the j th Node to the i th Node. The equation of
the ending Nodes is fixed to have reliability equal to one,
while the equation of failure Nodes is instead fixed to have
reliability equal to zero.
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